Assignment 8.

Cauchy Integral Formula, Cauchy Inequalities, harmonic functions.

This assignment is due Wednesday, March 16. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

(1) Evaluate the integral

$$\frac{1}{2\pi i} \int_L \frac{ze^z}{(z-z_0)^3} dz,$$

where $z_0 \in I(L)$. (*Hint:* Use formula for derivative of Cauchy's integral.)

- (2) Suppose that f is differentiable on a disk $B_{10}(i)$ and $|f(z)| \leq 54$ for z on the circle |z i| = 3. Use Cauchy Inequalities to find an upper bound for $|f^{(4)}(i)|$ and for $|f^{(4)}(0)|$. (*Hint:* For the latter, remember that a strict maximum of absolute value of an analytic function cannot be attained at an interiour point of a set, Theorem 24 in Lecture Notes.)
- (3) Suppose f is an entire function such that $|f(z)| \leq M|z|$ for some real constant M. Show that f(z) = az + b for some $a, b \in \mathbb{C}$. (*Hint:* Similarly to proof of Liouville's theorem, show that f'' = 0.) COMMENT. So there are no entire functions "squeezed between" linear and constant ones!
- (4) (a) Suppose f is an entire function such that Re f is bounded. Show that f is constant. (*Hint:* How do you make | · | out of Re?)
 - (b) Suppose u(x, y) is harmonic on \mathbb{R}^2 and bounded. Show that u is constant.
- (5) Find a harmonic conjugate for the following functions. (If one does not exist, show that.)
 - (a) $x^3 + Axy^2$, where A is a real number.
 - (b) $\sin y \sinh x$.
- (6) (a) Suppose u is a harmonic function and v its harmonic conjugate, so f = u+iv is analytic. Show that u²-v² is harmonic by considering f².
 (b) Generalize the above by proving the following theorem.
 - **Theorem.** (Composition of harmonic functions) Let u, v be conjugate harmonic functions on a domain G. For any function g = s + it analytic on the image of G under u + iv, the functions s(u(x, y), v(x, y)), t(u(x, y), v(x, y)) are harmonic, and the latter is a harmonic conjugate of the former.

(*Hint:* Do not compute $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. Instead, argue by complex differentiability.)

(c) Use the above to find a harmonic conjugate for $e^{-2xy} \sin(x^2 - y^2)$.